Petrov-Galerkin Method for the Coupled Schrödinger-KdV Equation
نویسندگان
چکیده
منابع مشابه
Wavelet-Petrov-Galerkin Method for the Numerical Solution of the KdV Equation
The development of numerical techniques for obtaining approximate solutions of partial differential equations has very much increased in the last decades. Among these techniques are the finite element methods and finite difference. Recently, wavelet methods are applied to the numerical solution of partial differential equations, pioneer works in this direction are those of Beylkin, Dahmen, Jaff...
متن کاملA Galerkin Radial Basis Function Method for the Schrödinger Equation
In this article, we consider the discretization of the time-dependent Schrödinger equation using radial basis functions (RBFs). We formulate the discretized problem over an unbounded domain without imposing explicit boundary conditions. Since we can show that time stability of the discretization is not guaranteed for an RBF-collocation method, we propose to employ a Galerkin ansatz instead. For...
متن کاملA New Dual-Petrov-Galerkin Method for Third and Higher Odd-Order Differential Equations: Application to the KDV Equation
A new dual-Petrov-Galerkin method is proposed, analyzed and implemented for third and higher odd-order equations using a spectral discretization. The key idea is to use trial functions satisfying the underlying boundary conditions of the differential equations and test functions satisfying the “dual” boundary conditions. The method leads to linear systems which are sparse for problems with cons...
متن کاملOn the Dual Petrov-galerkin Formulation of the Kdv Equation on a Finite Interval
An abstract functional framework is developed for the dual Petrov-Galerkin formulation of the initial-boundary-value problems with a third-order spatial derivative. This framework is then applied to study the wellposedness and decay properties of the KdV equation in a finite interval.
متن کاملOn the Dual Petrov-galerkin Formulation of the Kdv Equation in a Finite Interval
An abstract functional framework is developed for the dual Petrov-Galerkin formulation of the initial boundary value problems with a third-order spatial derivative. This framework is then applied to study the wellposedness and decay properties of Airy equation and KdV equation in a finite interval.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2014
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2014/705204